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Figure 1: Figure illustrating the different applications of SRDD method: SRDD exhibit better
sampling fidelity and zero shot performance compared to the VAR.

ABSTRACT

Autoregressive (AR) transformers have emerged as a powerful paradigm for visual
generation, largely due to their scalability, computational efficiency and unified
architecture with language and vision. Among them, next scale prediction Visual
Autoregressive Generation (VAR) has recently demonstrated remarkable perfor-
mance, even surpassing diffusion-based models. In this work, we revisit VAR and
uncover a theoretical insight: when equipped with a Markovian attention mask,
VAR is mathematically equivalent to a discrete diffusion. We term this reinterpreta-
tion as Scalable Visual Refinement with Discrete Diffusion (SRDD), establishing
a principled bridge between AR transformers and diffusion models. Leveraging
this new perspective, we show how one can directly import the advantages of
diffusion—such as iterative refinement and reduce architectural inefficiencies into
VAR, yielding faster convergence, lower inference cost, and improved zero-shot
reconstruction. Across multiple datasets, we show that the diffusion-based per-
spective of VAR leads to consistent gains in efficiency and generation. Code:
https://github.com/VIROBO-15/SRDD
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1

https://github.com/VIROBO-15/SRDD


1 INTRODUCTION

Autoregressive models Bengio et al. (2003); Papamakarios et al. (2017) are among the most efficient
and scalable approaches for generative modeling van den Oord et al. (2016b); Brown et al. (2020);
van den Oord et al. (2016a). Recent work Austin et al. (2021) shows that autoregressive training
can be viewed as a discrete diffusion variant, where tokens are masked in a fixed order rather than
randomly as in diffusion. However, using this formulation for visual generation introduces two key
limitations: (i) the autoregressive paradigm introduces an inductive bias, where pixels or regions
generated initially are not informed of the distribution or semantics of the generated image. (ii) the
model receives no explicit signal about the degree of degradation, forcing it to learn this internally
(one could imagine this as the initial tokens having more degradation and the final ones having
less). As a result, despite their efficiency, AR models underperform when directly combined with
diffusion-style training strategies.
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Figure 2: Scaling behaviour of SRDD and VAR:
SRDD exhibits similar scaling behavior with pa-
rameter size as observed in VAR

Although effective for text generation, these
models have not been successful for image gen-
eration. Diffusion models Ho et al. (2020); Song
et al. (2020; 2023) have portrayed the capability
to generate high quality images by iteratively
denoising pure noise to a point in the data dis-
tribution through a large number of steps. Al-
though effective for generating high-quality im-
ages, these models are notoriously slow Pee-
bles & Xie (2023); Chang et al. (2022); Sa-
haria et al. (2022) and require extensive design
choices Rombach et al. (2022); Peebles & Xie
(2023); Salimans (2016); Song et al. (2023); Lu
et al. (2023; 2022); Song et al. (2021) for fast
inference. Moreover, increasing the model size
for the diffusion model leads to heavy inference
computational requirements to achieve good quality results. Tackling the fundamental limitations
of a diffusion model requires a model that can perform fast generation while exhibiting scalability
with compute and parameter size. Recently, Visual Autoregressive Generation Tian et al. (2024)
(VAR) introduced a new paradigm of models based on next scale prediction using transformers.
These models, rather than predicting the next token as in GPT architectures Chen et al. (2020);
Sun et al. (2024); Ramesh et al. (2021), autoregressively predict the next scale corresponding to a
higher-resolution image. Moreover, VAR has also shown that increasing the parameters of the model
drastically improves the generation quality in terms of FID scores.

In this work, we delve deep into the inner workings of VAR and discrete diffusion models. We observe
similar findings of existing work Voronov et al. (2024), suggesting that the current version of VAR
has design inefficiencies and the overall model can be improved further by predicting the next scale
in a Markovian fashion, conditioned on the immediate previous scale rather than all previous scales.
Our analysis of the training dynamics and the loss functions of the model reveals that the Markovian
variant of VAR is an efficient formulation of a discrete diffusion model . Motivated by this, we present
Scalable Visual Refinement with Discrete Diffusion (SRDD), a theoretical perspective that interprets
the Markovian variant of VAR, together with probabilistic sampling techniques, through the lens of
discrete diffusion. To the best of our knowledge, we are the first work to connect a variant of VAR to a
discrete diffusion. As shown in (Figure 2), SRDD inherits VAR’s strong scaling behaviour, achieving
improved performance with increasing model size. The discrete diffusion perspective brings in an
added benefit, such as utilizing all relevant literature holding for discrete diffusion models in VAR
formulation. This in turn, drastically improves the generation quality of VAR without the need for
explicit handcrafted design choices, but instead uses structured choices deep-rooted in theory.

We experiment with three different properties tied to probabilistic sampling with diffusion properties,
such as (1) classifier-free guidance Ho (2022); Schiff (2024) (2) token resampling Wang et al. (2025),
and (3) distillation Salimans & Ho (2022); Meng et al. (2023), and show that SRDD in turn works
better when combined with these strategies. Moreover, like diffusion models, we also explore
zero-shot generation performance like super-resolution, inpainting, and outpainting and obtain better
results than the original VAR architecture. We present these results in Figure 1. With this work, we
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Figure 3: Scale-wise generation of VAR: The SNR increases through the generation process, similar
to the diffusion process.

reveal a new perspective on VAR by formally connecting it to discrete diffusion with a theoretical
lens that explains its behaviour and informs principled design choices, and direct the attention of
the community to how the quality, efficiency and explainability of visual generation can be further
improved. Thereby, we open up possibilities in visual generation research. This explainability may be
further used for design choices while scaling up LLMs for joint visual-language generation as well.

2 BACKGROUND

In this section, we describe in brief detail the working of visual autoregressive generation and discrete
diffusion models.

Visual Autoregressive Generation: Tian et al. (2024) brought about a new paradigm for visual
generative modeling, where the model is trained for next-scale prediction. Unlike earlier autoregres-
sive models that generate discrete tokens at a single resolution sequentially, in VAR, all tokens at
one resolution are generated jointly, and then progressively refined to move from the lowest to the
highest resolution. To generate an image with resolution H ×W , the generation process happens
progressively through sub-resolutions xi = hi × wi. At each step, the model conditions on all previ-
ously generated resolutions, effectively modeling p(x1, x2, ..., xi) =

∏N
i=1 pθ(xi|xi−1, xi−2, .., x1),

where xi denotes discrete tokens corresponding to different resolutions obtained through the multi-
scale VQVAE van den Oord et al. (2016b). These tokens by themselves may not form any meaningful
image, but the summation of residual over different resolutions reconstructs the whole image. An
autoregressive transformer is trained to learn the corresponding distribution. The effective training
loss for VAR can be written as

L = −Eq(xN )

[
ΣN

i=1 log pθ(xi|xi−1, ..., x1)
]
, (1)

where N is the total number of resolutions in the generation and q() is the training data distribution.

Discrete diffusion models: are the discrete counter parts of continuous-time diffusion models. These
models were first proposed inSohl-Dickstein et al. (2015), then later extended in Sahoo et al. (2024);
Hoogeboom et al. (2022); Luo et al. (2023a). D3PMsAustin et al. (2021) elaborated more on discrete
diffusion models and brought in the new perspective of rethinking the transition noise matrices. In a
general discrete diffusion model, the transition between adjacent states is modelled as a categorical
distribution, where the current state is transformed through a transition matrix. We formally define
this by q(xt|xt−1) = Cat(xt|p = xt−1Qt), where Qt is the transition matrix from a state xt−1

to a state xt and q(xt|x0) = Cat(xt|p = x0Qt), where Qt = Q1Q2 · · ·Qt. The choice of the
transition matrix decides the nature of degradation existing in the diffusion process and is designed
by [Qt]ij = q(xt = j|xt−1 = i). Like in a continuous time diffusion model, a parameterized model
pθ(xt, t) learns the reverse distribution, removing degradation from an input signal xt, given the
amount of degradation. Discrete diffusion models are trained with cross-entropy loss predicting the
categorical distribution at each timestep t, formally defined as,

L = −Eq(x0)

[
ΣT

t=1Eq(xt|x0) [logpθ(x0|xt)]
]
. (2)

Alternatively, though the Markovian formulation, diffusion models may also be trained to reconstruct
xt−1 given xt directly using the parameterized model. The corresponding loss function is written as

L = −Eq(x0)

[
ΣT

t=1Eq(xt|x0) [logpθ(xt−1|xt)]
]
, (3)
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Figure 4: Figure illustrates the connection between the Markovian variant of VAR (SDD) and
discrete diffusion.: The SDD forward process g(In | I0) = M(n)I0 mirrors the diffusion transition
q(xt | x0), where the ground truth I0 is deterministically degraded by the transition matrix M(n).
Further, the learnable transformer fθ(In, n, y) predicts the coarser-to-finer transition In+1, analogous
to the reverse diffusion step pθ(xt−1 | xt). Importantly, the training objective in both cases reduces to
a cross-entropy loss between the forward posterior and model prediction, making the loss formulation
of SDD equivalent to the diffusion ELBO in the limiting case of a deterministic transition.

where pθ is a diffusion model that iteratively restores a sample from the degraded distribution to one
in the tokens of real distribution.

Concurrent works: Recent works, Kumbong et al. (2025); Voronov et al. (2024), observe that VAR
assumes all preceding scales are equally important for generating the next scale, even though the
current resolution already encodes prior-scale information, making such conditioning redundant and
architecturally inefficient as shown in Figure 3. While prior work recognizes these shortcomings, it
lacks a theoretical explanation of why Markovian variants perform better. In this paper, we bridge this
gap by showing that the Markovian formulation of VAR naturally aligns with the discrete diffusion
perspective, thereby offering a principled explanation for the observed performance gains.

.

3 METHOD

In this section, we connect the working of Markovian variant VAR (referred as SDD) to that of a
discrete diffusion model as shown in Fig. 4.

3.1 AUTOREGRESSIVE MODELS AS DISCRETE DIFFUSION MODELS.

Following Austin et al. Austin et al. (2021), an autoregressive process can be interpreted as a special
case of a discrete diffusion model. Consider a sequence of length N = T and a deterministic
forward process that progressively masks tokens one by one q([xt]i | x0) = [x0]i if i < T − t else
[MASK]. This implies that q(xt−1 | xt, x0) is a delta distribution over the sequence with one fewer
mask: q([xt−1]i | xt, x0) = δ[xt]i if i ̸= N − t else δ[xt]0 . Although this procedure does not act
independently on each token, it can be recast as a diffusion process defined over the product space
[0, N ]× V , where V is the vocabulary and Q is an N × |V| ×N × |V| sparse transition matrix. All
tokens except the one at position i = T − t have deterministic posteriors, so the KL divergence

DKL

(
q([xt−1]j | xt, x0) ∥ pθ([xt−1]j | xt)

)
= 0, for j ̸= i (4)

vanishes for j ̸= i. The only non-trivial divergence occurs at position i, yielding

DKL

(
q([xt−1]i | xt, x0) ∥ pθ([xt−1]i | xt)

)
= − log pθ([x0]i | xt), (5)

which exactly corresponds to the standard cross-entropy loss used in autoregressive training.

3.2 RETHINKING VAR VARIANTS THROUGH THE DISCRETE DIFFUSION LENS

To illustrate how VAR is a variant of discrete diffusion models, we link VAR towards the key
characteristics of discrete diffusion models (1) A model parameterized with the amount of degradation
to remove (2) A categorical distribution matching loss function (3) A progressively increasing SNR
during the generation process
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(1) A amount of degradation parameterized into the model input: VAR inherently is an iterative
refinement model trained to reconstruct tokens of different levels of intensities. Just as in diffusion
models where the timestep of diffusion is conditioned to the model, we found out that in the original
implementation for VAR, the current resolution(scale) to be restored is parameterized, embedded and
informed through the model through a concatenation operation along with the class embedding.

(2) Loss function for training VAR: Another notable design choice of VAR is the use cross-entropy
loss for predicting discrete tokens as defined in 1. Taking a closer look at the loss for discrete diffusion
where categorical distribution matching happens through cross entropy loss, Equation (3),

L = −Eq(x0)

[
ΣT

t=1Eq(xt|x0) [logpθ(xt−1|xt)]
]
. (6)

In the limiting case where there is only one possible transition between the states xt → xt−1 . And
the final stationary state xT is predefined to a fixed < SOS > token, the effective loss function
becomes,

L = −Eq(x0)

[
ΣT

i=1logpθ(xi−1|xi)
]
. (7)

Taking a closer look at 1. We find that in the limiting case of a deterministic transition matrix, this is
the exact same loss function(within the factor of a scaling constant) used to train VAR, but rather
conditioned on the previous scale alone.

(3) Progressively increasing SNR: We reformulate VAR as a model that recursively reconstructs
images of higher scales conditioned on low scales. The low resolution tokens In ∈ Rn×n at a scale n,
are obtained through downsampling from tokens of resolution IN ∈ RN×N through In = M(n).I0,

M(n) ∈ Rn2×N2

is a matrix that performs a non-linear deterministic downsampling operation
dependent on n and N is the maximum scale. At each scale n, the model fθ predicts the residual
relative to the upsampled previous scale,

fθ(In−1,n) : (In−1)↑(n) → In − (In−1)↑(n), (8)

where (In−1)↑(n) denotes a upsampling operation that upscales In−1 to the size of In. The exact
transformation is provided in the supplementary material.

As the scale index n increases, the signal-to-noise ratio (SNR) of In also increases, with smaller n
corresponding to coarser, noisier resolutions. Thus, the progressive downsampling of the original
image IN into multiple resolutions can be interpreted as a diffusion process as prescribed in D3PMs
Austin et al. (2021) with deterministic transition matrix Q as M(n). This behaviour is illustrated in
Figure 3, showing how SNR improves through successive stages of the generation process.

The corresponding transformation for a diffusion model, for the transition from a state xt → xt−1,
brings in an effective transformation,

√
αtx0 +

√
(1− αt)ϵ1 → √

αt−1x0 +
√
(1− αt−1)ϵ2; ϵ1, ϵ2 ∼ N (0, I) (9)

The extra information on a signal level brought by the model can be described as

pθ(xt, t) :
√
αtx0 +

√
(1− αt)ϵ1 → (

√
αt−1 −

√
αt)x0, (10)

where
√
αt−1 − αt → 0 as t → 0 . Here pθ(.) is the diffusion model bringing this transformation.

Comparing Equation (10) and Equation (8), we see that in both models, a parameterized network
learns the residual signal information required at a particular SNR.

A model satisfying all the above three criteria could be broadly categorized as a difffusion
modelBansal et al. (2023). However, conventional diffusion-based realization of this approach
based on existing literature would ideally require all corresponding latents xt to be of the same
resolution. Although more efficient methods have been proposedTeng et al. (2023); Zheng et al.
(2024), these methods still operate at a small number of resolutions, with each resolution having
multiple diffusion steps. Here is where the efficiency of VAR comes into play. If VAR can be
modified to be dependent on the previous scale alone, an efficient modelling of a discrete diffusion
process becomes possible. This could be performed by converting the blockwise causal mask to a
Markovian attention mask. The Markovian variant of VAR outperforms VAR over multiple datasets.
We argue that this observation is because the Markovian variant of VAR acts like the exact formu-
lation of a discrete diffusion model, resulting in a higher evidence lower bound (ELBO) than the
autoregressive formulation. We refer to this model—with fixed start token, fixed transitions, and
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Table 1: Quantitative results compared to different generative models on the same training
setting: We compare using FID and IS on conditional and unconditional generation tasks. Here, ”-”
denotes that the model has not converged during the training process.

Method
Conditional Unconditional

MiniImageNet SUN FFHQ AFHQ

FID(↓) IS(↑) FID(↓) IS(↑) FID(↓) IS(↑) FID(↓) IS(↑)

LDM 84.13 15.79 34.62 17.69 18.91 3.95 92.53 5.09

DiT-L/2 57.55 31.29 – – 28.44 3.51 – –
VAR 21.01 59.32 15.72 16.19 19.23 3.09 14.74 9.92

Ours: SRDD 16.76 63.31 13.26 17.97 17.37 4.05 13.14 10.09

Markovian attention—as Scalable Discrete Diffusion (SDD), and validate its effectiveness through
distribution-matching experiments.

This observation further opens up multiple possibilities (1) An explainability aspect to VAR that con-
nects it to discrete diffusion models, which suggests possibilities for how to better boost performance.
(2) All the works and numerous research papers for enhancing discrete diffusion models can now be
utilized for VAR variants for enhanced generation process. (3) VAR showed that the utilization of
properties like classifier-free guidance(cfg) and scaling model size improved performance, but this
was an empirical observation. We inturn explain why these design choices brought in improvements
and how we can further enhance the performance of the models.

In the next section, we detail four different variants of design choice that can significantly boost the
performance of a Markovian variant of VAR. Many of these are motivated by their counterparts from
continuous and discrete diffusion models

3.3 HOW TO IMPROVE THE GENERATION PERFORMANCE AND EFFICIENCY

We present four different methods for enhancing the performance of our Markovian version of VAR:

(a) Classifier free guidance: Classifier-free guidance (cfg) has been widely studied in diffusion
models. Ho (2022) provided a probabilistic interpretation, showing that at each sampling step the
model generates outputs biased toward the conditional distribution while being pushed away from
the unconditional data distribution. This is defined formally as p(x|c) ∼ pw+1(x|c)

pw(x|ϕ) where ϕ denotes
the unconditional distribution. In VAR, cfg was previously tuned in an ad-hoc manner, yielding an
empirical “optimal” value but without a consistent trend. In contrast, we show the effect of cfg for
SDD and the naive VAR model, as we can observe, making the model Markovian and presenting the
discrete diffusion perspective brings in a behaviour pattern for different cfg values and enables to
boost performance higher, similar to that observed in diffusion models.

(b) Token resampling for enhanced generation: Recent works in discrete diffusion for language
generation Nie et al. (2025); Sahoo et al. (2024) propose resampling low-probability tokens at each
timestep conditioned on the remaining context. We adopt this strategy in SDD, calling it Masked
Resampling (MR) and final models as SRDD: at each resolution in SDD, tokens with prediction
probability below 0.01 are resampled multiple times to improve generation quality. This process
refines the out-of-distribution tokens at each stage.

(c) Simple resampling for enhanced generation. Diffusion models also benefit from increasing the
number of sampling steps. Analogously, we enhance SDD by performing multiple sampling steps per
scale, effectively increasing the refinement depth.

(d) Distillation of VAR variants: Distillation of diffusion models has been extensively studied.
Starting with progressive samplingSalimans & Ho (2022), DMDYin et al. (2024), multiple distillation
methodsMeng et al. (2022; 2023) have been proposed for more efficient generation. In a similar
fashion we explore the effectiveness of progressive distillation in our variant of VAR. Starting with
a pretrained SDD model, as in diffusion, we skip certain scales as the distillation proceeds, which
inherently increases the SNR gap between consecutive scales. To replicate this in SDD, we drop
certain resolutions in VAR and upsample the previous resolution for the discrete latent tokens:
hi, wi → hi+m, wi+m;m > 1. We provide further analysis in the experiments section.
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4 EXPERIMENTS

Datasets and metrics We benchmark on two class–conditional datasets. Mini-ImageNet Dhillon
et al. (2019), containing 50,000 training and 10,000 validation images. SUN397 Herranz et al. (2016)
comprises 108,753 images from 397 scene categories. For computational efficiency, we sample a
balanced subset of 175 classes, retaining 150 images per class (26,250 images in total). To evaluate
class-agnostic synthesis we adopt two face-centric datasets. FFHQ Karras et al. (2019) contains
70,000 high–quality human portraits, while AFHQ Choi et al. (2020) contains 15,000 animal faces
spanning cats, dogs, and wildlife. All images are resized to 256 × 256 before training. For the
zero-shot analysis, we draw 300 validation samples from AFHQ and reuse the RePaint Lugmayr et al.
(2022) masks. To quantify image fidelity and diversity, we generate 5,000 samples per model and
evaluate using FID Heusel (2017) and IS Salimans (2016). For zero-shot editing tasks we report:
LPIPS Zhang et al. (2018) and FID for in/out-painting, and PSNR and SSIM for super-resolution.
Lower values are better for LPIPS and FID, whereas higher is better for IS, PSNR, and SSIM.

Implementation Details. We use the decoder-only Transformer design of VAR Tian et al. (2024). To
enforce the scale-wise Markovian dependency described above, we replace the block-wise causal
mask with a Markovian mask that lets tokens at scale s attend to all tokens from scale s−1. We reuse
the codebook and tokenizer of VAR: a single VQ codebook with vocabulary size V = 6,000 shared
across all scales. The codebook is frozen during Transformer training. All models are trained with
AdamW (β1 = 0.95, β2 = 0.05, weight decay 0.05) and a learning rate of 10−4. We employ a batch
size of 224 and clip gradients at a norm of 1.0. Training runs for 200 epochs on 4 NVIDIA A6000
GPUs. Apart from the Markovian mask and resampling, every hyper-parameter is kept identical to
the VAR configuration to ensure a fair comparison. In our academic setting, we are limited to a
modest GPU budget; consequently, all ablations are conducted on the reduced datasets.

4.1 EXPERIMENT RESULTS

Table 1 shows the comparison of SRDD with three strong generative baselines—LDM Rombach
et al. (2022), DiT-L/2 Peebles & Xie (2023), and the VAR Tian et al. (2024) which are Pre-trained
with 200 epochs—on four different benchmarks. SRDD approach yields the best FID and IS on
every dataset. Against the VAR, we observe that our method has relative FID drops of 20.2% on
MiniImageNet Dhillon et al. (2019), (21.01→16.76), 9.7% on FFHQ Karras et al. (2019)(19.23
→17.37). These improvements are accompanied by IS gains of 6.7% and 31.1%, respectively.
DiT-L/2 and LDM trail far behind—e.g. on MiniImageNet DiT-L/2 obtains an FID of 57.55 and
LDM achieves 84.13 , more than 3× worse than ours—highlighting the data-efficiency advantage of
our scale-wise Markovian design. We use the same number of epochs (200) to train all the models.

Figure 1 visualizes random generations from VAR (left block) and SRDD (right block). Across
all three domains—MiniImageNet (top row), FFHQ (middle), and AFHQ (bottom)—our images
exhibit noticeably sharper edges, cleaner textures and far fewer structural artifacts: The bird, lion
and mice images from VAR suffer from blurred contours and texture collapse, whereas ours preserve
fine feather patterns and realistic fur. Faces generated by SRDD contain consistent skin tones and
symmetric facial features; VAR often produces mottled skin and asymmetries. Animal portraits
(e.g., cat, dog, leopard) demonstrate higher fidelity in ear positioning, eye clarity and background
coherence with our approach. Additional examples are provided in the supplementary material.

4.2 METHOD-WISE ANALYSIS
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Figure 6: Effect of refinement steps in MR: Increasing
MR steps leads to convergence.

Resampling We perform token–level re-
sampling during inference. At each refine-
ment step, we (i) compute the acceptance
probability for every latent token, (ii) re-
sample tokens whose probability falls be-
low a threshold presample, and (iii) feed the
updated grid back into the scale-wise Trans-
former decoder for another pass. We ab-
late two factors: the threshold presample∈
{10−4, · · · , 10−1} (Fig. 5) and the number of refinement iterations T ∈{100, · · · , 102} as shown in
(Fig. 6), under guidance scale, cfg = 3.5, 5.0, 7.5.
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Figure 5: Ablation study illustrating the effect of MR: We experiment with different threshold
presample and the number of refinement steps (Zoom in for better view)

In Fig. 5 (top), FID decreases monotonically with the number of refinement steps for every threshold
and on both cfg values. Across thresholds, the global optimum is reached at presample = 0.01: after
T = 5 iterations we obtain an FID of 16.76 (cfg 5.0) and 16.81 (cfg3.5). This setting refines ≈ 65%
of tokens per pass, striking a balance between coverage (enough tokens are revisited) and context
preservation (35% of high-confidence tokens remain to guide the Transformer attention). Lower
probabilities (presample < 0.005) leave too many erroneous tokens untouched, whereas aggressive
thresholds (presample ≥ 0.05) remove excessive context, leading to noisy conditioning and a mild
FID regression. The trend is consistent across both guidance scales, indicating that the resampling
mechanism interacts weakly with classifier-free guidance itself.

Fixing presample = 0.01, Fig. 6 reveals that when we increase the inference time, most of the quality
gains occur in the first 15–25 passes; FID curves flatten afterwards on both MiniImageNet and SUN.
This insight suggests that the vast majority of tokens reach the acceptance threshold within 15-25
iterations; subsequent passes bring negligible improvements.

We also perform simple resampling, inspired by self-refinement in diffusion models, where increasing
the number of refinement steps improves quality. Similarly, SRDD benefits from additional self-
refinement, as illustrated in Figure 7, which visualizes the contribution of each component to
perceptual quality: VAR frequently distorts global geometry (warped goose torso, blurred dog
muzzle) and leaves background noise. SDD conditions on the immediate scale, corrects semantics
and coarse layout, yet results remain soft and lack high-frequency detail. SDD + SR,: resampling all
tokens each pass sharpens the image but converges slowly and occasionally and get better results
compared to SDD. SRDD (SDD + MR): our confidence-aware refinement masks only low-confidence
tokens. Over five iterations (columns 1,2,3,5 from left to right), it progressively recovers fine
boundaries (goose neck, toucan beak), restores textures (poodle fur), and suppresses background
noise, ultimately producing the sharpest, most faithful images.
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Figure 8: Effect of cfg: We present the effect of cfg on
FID and IS.

Classifier free guidance Figure 8 evalu-
ates the FID Heusel (2017) and IS Salimans
(2016) obtained by the VAR, SDD, and two
enhanced SDD that include Simple resam-
pling (SR) and Token Resampling (MR),
across a range of cfg scales. Moderate guid-
ance is optimal for SDD. FID decreases
monotonically from cfg 1 to cfg 5, reach-
ing 17.99 on MINIIMAGENET. IS peaks
at simultaneously at 63.28. Beyond cfg 5
both metrics plateau, mirroring the satura-
tion behaviour reported for discrete diffusion models Schiff (2024). VAR collapses under strong
guidance, leading to an increase in FID (20 → 27) and a decrease in IS (60 → 51) as cfg grows.
We attribute this to over-conditioning: without an explicit noise schedule, large cfg values suppress
token-level entropy and hinder the performance. Both SR and MR yield uniformly lower FID than
SDD for cfg 1–4 and maintain near-optimal performance for cfg values 6–10. Iterative feedback
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VAR SDD SDD + MRSDD + SR
Step-1 Step-5 Step-1 Step-5

Figure 7: Qualitative results illustrating impact of different components: We present the results
with each component and their impact.

re-injects stochasticity after each guidance pass, preventing the over-conditioning collapse predicted
by theory Zhang (2024). These results validate the diffusion-theoretic interpretation of the Markovian
factorisation.

Distillation of VAR variants Large Consistency Models (LCM) Luo et al. (2023b) demonstrate
that a diffusion teacher can be distilled into a student that samples in fewer denoising steps. Since
SDD is likewise a multi-scale generative process, we ask an analogous question: Can we remove
intermediate scales without sacrificing realism?

Starting from pre-trained checkpoints of SDD on MiniImageNet, we fine-tune each model with
the same cross-entropy objective but only on a subset of its original scales. Concretely, the
full schedule { 1, 2, 3, 4, 5, 6, 8, 10, 13, 16} is progressively pruned to { 1, 3, 5, 8, 13, 16} and then
to { 1, 5, 8, 13, 16}. We always retain the highest two scales 13 and 16 because they encode
high-frequency details that are irreplaceable in practice. Skipping every second scale (schedule
1-3-5-8-13-16) increases FID by only +0.02 (from 17.99→ 18.01) and leaves IS unchanged
(61.98→62.01) at cfg= 5.0, confirming that early-stage redundancy. More aggressive pruning three
consecutive early scales (1-5-8-13-16) yields a moderate FID of 19.48 and an IS of 61.99.

Like diffusion models, SDD can be time-compressed by pruning early coarse scales while preserving
the final high-frequency stages. A 6-scale student (1-3-5-8-13-16) achieves a similar FID/IS
as the 10-scale teacher, cutting inference cost by 20% without retraining from scratch. The SDD
achieves a 1.75× speedup and a 3× reduction in memory usage. Moreover, incorporating scale
distillation further improves inference latency and reduces the memory footprint compared to the
original VAR. More pruning comparisons are shown in the supplementary

4.3 ZERO-SHOT PERFORMANCE

Table 2: Zero-shot Performance: We evaluate the
zero shot performance on image reconstruction tasks

Method Inpaint Outpaint SR

LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑
VAR 0.26 29.92 0.48 54.01 18.01 0.403
SDD 0.23 28.79 0.46 52.63 18.06 0.411

Following the evaluation protocol of
RePaint Lugmayr et al. (2022), we
assess in-painting, out-painting, and
super-resolution without task-specific
fine-tuning. A set of 300 validation images
is sampled from AFHQ validation set. For
the first two tasks, we reuse the publicly
released masks of Lugmayr et al. (2022); Table 2 compare the VAR with SDD across four metrics.
SDD consistently outperforms the baseline: In-painting. LPIPS drops from 0.26 to 0.23 and FID
from 29.92 to 28.79. Out-painting. Similar gains are observed with LPIPS 0.48→ 0.46 and FID
54.01→52.63. Super-resolution. SSIM rises from 0.403 to 0.411,dB, while PSNR improves from
18.01 to 18.06.
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Method

Conditional Unconditional
MiniImageNet SUN FFHQ AFHQ
FID(↓) IS(↑) FID(↓) IS(↑) FID(↓) IS(↑) FID(↓) IS(↑)

VAR 21.01 59.32 15.72 16.19 19.23 3.09 14.74 9.92
SDD 18.03 60.99 15.29 16.23 18.89 3.05 14.03 9.97
SDD + cfg 17.99 62.28 14.31 17.05 18.89 3.05 14.03 9.97
SDD + cfg + SR 16.82 63.28 14.01 17.51 17.62 3.89 13.52 9.66
SDD + cfg + MR: SRDD 16.76 63.31 13.26 17.97 17.37 4.05 13.14 10.09

Table 3: Ablation
study across datasets:
SR: Simple Resam-
pling. MR: Mask
Resampling. cfg: Opti-
mized Classifier-Free
Guidance.

Figure 1 show the visualization: In-painting. On the child face example (top left) SDD reconstructs
a coherent facial structure, whereas VAR produces colour bleeding around the eyes and mouth. On
the school-bus scene, the yellow guide-lines are sharply restored only by our method. Out-painting.
When extending the portrait, VAR introduces noticeable artefacts in the hair region, while SDD
preserves texture consistency and global lighting. A similar effect is evident on the cat image, where
fur continuity is maintained. Super-resolution. For faces, SDD yields crisper skin details and avoids
the blocky artifacts visible in the baseline. On the metallic pot, subtle rim patterns and both handles
are faithfully reconstructed, unlike the blurred outlines of VAR. The proposed Markovian decoder
requires no additional training yet delivers uniformly better zero-shot editing and reconstruction,
highlighting its robustness and generality across disparate image-editing tasks.

4.4 ABLATION STUDY

 SDD+CFG+MR SDD+CFG+SR     SDD+CFG           SDD           VAR

Figure 9: Ablation Study: Effect of different compo-
nents of SRDD on performance.

To disentangle the impact of the Markovian at-
tention scheme, optimal cfg and the two resam-
pling strategies shown in Secs. 3.3, we conduct
ablations on all the benchmarks. Quantitative
numbers are summarised in Table 3, while Fig-
ure 9 visualises an example for every setting.

Replacing causal masking with Markovian
masking yields a consistent reduction in mem-
ory cost and improves visual quality on all four
benchmarks. For instance, FID drops from 21.01
to 18.03 on MiniImageNet (−2.98, ≈14% rela-
tive), while IS rises from 59.32 to 60.99. Quali-
tatively (Fig. 9 (a)→(b)), SDD sharpens object boundaries and suppresses artifacts, which confirms
that conditioning each scale only on its immediate predecessor is superior for high-quality synthesis,
as all the unwanted low-frequency information is discarded in the Markovian style of SRDD. Further,
best cfg 5.0 leads to improvement in visual result as shown in (Fig. 9 (b)→(c)).

We perform simple resampling at each scale. This refinement step recovers high-frequency details:
FID is reduced by another 1.17 on MiniImageNet, and IS jumps to 63.28. Fig. 9 (c)→d shows crisper
textures (e.g. sails and fur) and reduce the artifacts further. Replacing SR with our token-level mask
resampling yields the best overall scores on all datasets. Relative to the VAR, FID improves by
20.2% on MiniImageNet (21.01→16.76) and 15.6% on SUN (15.72→13.26), while IS gains range
from +6.7% to +31.1%. Notably, unconditional FFHQ reaches an IS of 4.05. Figure 9 (e) illustrates
that MR selectively sharpens salient regions(the boat’s rigging, the dog’s face and the body) without
introducing over-sharpening artifacts.

5 CONCLUSION

We revisited Visual Autoregressive Generation (VAR) through the lens of discrete diffusion and
showed that its Markovian variant, SDD, is mathematically equivalent to a structured discrete diffusion
process. This perspective explains the bridge between AR transformers and diffusion models, removes
inefficiencies of causal conditioning, and enables principled use of diffusion techniques such as
classifier-free guidance, token resampling, and scale distillation. Empirically, SDD achieves faster
convergence, lower inference cost, and improved zero-shot performance across multiple benchmarks
while retaining strong scaling properties. We believe this diffusion-based reinterpretation of VAR
provides both theoretical clarity and practical efficiency, opening new directions for scalable and
unified visual generation.
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6 ETHICS STATEMENT

This work studies generative modeling from a theoretical and methodological perspective. All
datasets used (Mini-ImageNet, SUN397, FFHQ, AFHQ) are publicly available and widely adopted in
research, involving no human subjects or private data. While generative models may be misused to
create harmful content, our contributions are intended solely to advance scientific understanding and
efficiency of visual generation. We declare no conflicts of interest, and all results are reproducible
with the code and checkpoints that will be released.

7 REPRODUCIBILITY STATEMENT

We have taken steps to ensure reproducibility of our results. The datasets are publicly available and
described in the appendix. Model architecture, training details, and hyperparameters are provided
in Section 4 and Appendix. We report all experimental protocols, ablations, and evaluation met-
rics. Code, pretrained checkpoints, and instructions to reproduce our results will be released upon
publication.
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APPENDIX

A FULL ALGORITHM OF FORWARD SAMPLING PROCESS IN VAR

Let fθ denote the VAR transformer network , let it operate at a scale n, with input in−1, at a scale n.
The inference algorithm of VAR can be described as

fθ(in−1,n) : in−1 → hn (11)
fn = fn−1 + (hn)↑(N) (12)

in = (fn)↓(n+1) (13)

Here ↓ (n+ 1) denotes downsampling of the output to a scale n − 1. N is the largest scale in
the sampling process. Other details remain the same as described in the section Rethinking VAR
Variants Through the Discrete Diffusion Lens.

B ANALYSIS

Classifier free guidance We observe in Fig. 10 the same guidance trend on the SUN 397 benchmark.
VAR peaks at a very mild scale. A guidance weight of cfg = 2 yields its best trade-off (FID ↓ 15.55,
IS ↑ 16.76); any further increase steadily harms generative quality, reaching FID 27, IS 12 at cfg 10.
Markovian factorisation stabilises guidance. SDD remains flat until cfg 6, and both refinement
heads suppress the residual drift. The mask-resampling variant (MR) attains the global optimum at
cfg = 5 with FID ↓ 13.26 and IS ↑ 17.97, while staying within ±0.3 FID across the whole 1.5–10 range.
This robustness removes the need for dataset-specific tuning and further analysis of our diffusion-style
interpretation: iterative resampling continually re-injects entropy, offsetting the over-conditioning
collapse that plagues the original VAR decoder.

Distillation of VAR variants To further understand the distillation, we consider three more extreme
schedules, visualised in Fig. 11.

• ×3 step (1-5-13-16). Dropping two out of every three scales reduces decoder passes
by 2.5× but also degrades quality: FID jumps to 31.21 (cfg 3.5) and 29.83 (cfg 5.0), while
IS decreases to 48.25/48.61. The student fails to reconstruct both low-frequency layout
and high-frequency details—suggesting that coarse-to-fine refinement needs at least one
intermediate scales.

• Early-heavy (1-2-3-4-5-8-16). Retaining a single high scale pass is insufficient: FID
deteriorates to 39.91 (cfg 5.0) and IS collapses to 38.95. Qualitative inspection reveals blurry
textures and colour bleeding, indicating that high-frequency content injected at scale 16
cannot overwrite errors accumulated during the densely sampled low-scale stages.

• Random sparse (1-4-8-16). A non-uniform, randomly spaced schedule performs worst
(FID 38.76, cfg 5.0). Without a consistent geometric progression, successive decoders
operate on feature maps whose receptive fields overlap poorly, breaking the iterative error-
correction mechanism that underpins multi-scale generation.

Across all settings, the Markovian variant (SDD) remains strictly better than the original VAR,
mirroring the trends. Consecutive low-resolution scales are largely redundant, but at least two
high-resolution scales are indispensable. A simple distillation of 1-3-5-8-13-16 is therefore
near-optimal—cutting inference time by 20% while preserving perceptual quality within 8% of the
teacher.

C LIMITATIONS

While our results are promising, the proposed SRDD framework still has several practical and
scientific limitations that future work should address.
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Figure 10: Effect of cfg on SUN397 Dataset: We Present the effect of cfg on FID and IS Score

• Compute budget. All experiments were run on just 4 NVIDIA A6000 GPUs for 200 epochs.
This constraint forced us to use reduced versions of the training datasets and limited the
largest model size we could explore. Larger-scale training might uncover different failure
modes or reveal further gains that we could not test in our setting.

• Dataset scope. We evaluate on four medium-scale image collections—Mini-ImageNet,
SUN397 (subset), FFHQ, and AFHQ. We cover only 256× 256 resolution and a modest
range of visual diversity. Consequently, it remains unclear how SRDD performs on very
high-resolution images, highly complex scenes (e.g., ImageNet-1k, COCO), or video.

• Codebook expressiveness. Like VAR, we rely on a single VQ-VAE codebook. Although
efficient, this discrete bottleneck can limit fine detail and color accuracy compared with
continuous-latent diffusion models.

D FUTURE WORK

Although Scalable Refinement with Discrete Diffusion (SRDD) already improves upon VAR across
several axes and finds a closer interpretation with discrete diffusion models, we see at least four
promising directions for further research:

• Larger-scale pre-training and scaling laws. Our results hint that SRDD follows the
same parameter–quality trend observed in VAR. A systematic scaling over wider model
sizes, sequence lengths, and token vocabularies could reveal precise scaling laws, guiding
practitioners toward the most compute-efficient regimes Kaplan et al. (2020); Hoffmann
et al. (2022).

• Learned resampling policies. The current MR strategy uses a fixed probability threshold.
Replacing this hand-tuned rule with a small policy network—trained to predict which tokens
to resample given the decoder’s uncertainty—might yield further gains while cutting the
number of refinement passes.

• Continuous–discrete hybrid diffusion. SRDD operates in a purely discrete latent space;
continuous-time diffusion models excel in capturing fine textures. A hybrid pipeline that
first runs SRDD at coarse scales and then applies a lightweight continuous decoder (e.g.
a UNet) for final touch-ups could combine the speed of SRDD with the photorealism of
continuous diffusion Song et al. (2020); Peebles & Xie (2022).

• Leveraging advances in discrete diffusion theory. We showed that the Markovian variant
of VAR is theoretically and empirically equivalent to a discrete diffusion process. As the
community uncovers new principles—e.g., refined noise schedules, tighter ELBO bounds, or
more stable discretisations—these insights can be transferred to SRDD, offering a low-cost
pathway to inherit future breakthroughs in discrete diffusion.
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We acknowledge that Large Language Models (LLMs) were used to assist with refining the clarity of
the writing in this manuscript.
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Figure 12: Qualitative Comparison of DiT-L/2, VAR and Ours: SRDD; We do not compare with
LDM because LDM model didn’t converage
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Figure 13: Qualitative Comparison on AFHQ Datasets, LDM, DiT-L/2, VAR and SRDD: DiT-L/2
didn’t converage on AFHQ Datatsets
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Figure 16: Non-curated example images generated by the proposed SRDD approach for the MiniIma-
genet Dataset
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Figure 17: Non-curated example images generated by the proposed SRDD approach for the AFHQ
Dataset
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Figure 18: Non-curated example images generated by the proposed SRDD approach for the FFHQ
Dataset
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